lx1

恒小花:2024年AI人工智能趋势

快讯 | 2024-02-19 15:49:26
时间:2024-02-19 15:49:26   /   来源: 网络      阅读量:19591   会员投稿

一个充满创新、变革,更重要的是充满机遇的未来。就像20世纪50年代的工业革命一样,50年代见证了数字计算的兴起,重塑了行业和社会规范。如今,人工智能也扮演着类似的角色,正在掀起下一场工业革命。

宛若二战后的技术繁荣,我们正在2024年经历行业转型、新技能需求和重大伦理问题。

01 生成式人工智能从炒作跃为中心舞台

飞艇在20世纪30年代达到了巅峰,但由于飞机技术的发展和战争的爆发,飞艇逐渐被取代。然而,随着近年来科技的进步和节能减排减迫在眉睫,飞艇又开始回归历史舞台,据报道,美国将建全球最大飞艇,运载量10倍于波音737。

就像飞艇卷土重来一样,生成式人工智能有望重新定义科技生态系统,从“炒作”转变为核心战略。

对于企业来说,这是创新方式的一次范式转变,他们将从“尝试生成式人工智能”转向“采用生成式人工智能”。如早期云计算技术所带来的技术变革浪潮,生成式人工智能将对技术生态系统产生类似甚至更大的影响。

据《福布斯》报道,97%的企业认为,ChatGPT等生成式人工智能工具将对他们的业务产生积极影响。

2024年,人工智能将不仅仅是一个流行词,而是技术进步和业务转型的重要推动力。“人工智能战略就是企业核心战略”。

02 下一代神经网络开始崭露头角

在大模型领域,Transformer凭一己之力撑起了整个江山。但随着模型规模的扩展和需要处理的序列不断变长,Transformer的局限性也逐渐凸显,比如其自注意力机制的计算量会随着上下文长度的增加呈平方级增长。为了克服这些缺陷,研究者们开发出了很多注意力机制的高效变体,但收效甚微。

最近,一项名为“Mamba”的研究似乎打破了这一局面,它在语言建模方面可以媲美甚至击败Transformer。这都要归功于作者提出的一种新架构——选择性状态空间模型(selective state space model),该架构是Mamba论文作者卡内基梅隆大学机器学习系助理教授 Albert Gu此前主导研发的S4架构(Structured State Spaces for Sequence Modeling)的一个简单泛化。

这代表了人工智能在处理和理解序列方面的一次飞跃,而序列是人类认知的一个基本方面。

神经符号人工智能(Neuro-symbolic AI)融合了神经网络的最佳学习能力和符号人工智能的精确性。这种混合方法有望更细致、更复杂地理解复杂问题,弥合类人推理与机器效率之间的差距。

然后是人工智能与自校正模型的校准,即创建能够在没有持续人为干预的情况下自我适应和纠正的模型,更接近于一种独立、负责任的生成形式,而不会产生大规模幻觉风险。

这些新的模型架构描绘了一个未来,在这个未来,人工智能的能力可以与人类的认知能力相媲美。虽然研究还为时尚早,但期待这一领域实现飞跃和突破。

03 数据平台推出自己的矢量数据解决方案

随着生成式人工智能对矢量数据库的依赖(矢量数据库的每个对象都有其位置和属性信息,这些信息可以被查询、分析和显示),2024年数据平台都将推出自己的矢量数据解决方案。

矢量数据库是生成式人工智能更复杂用例的关键要求,如对话记忆、搜索文档(RAG),以及索引图像等多模态解决方案。2023 年年中,随着多模态模型变得更容易获取,矢量数据需求激增。

04 AI芯片产业链企业急于争夺主动权

随着人工智能占据主导地位,更好地控制端到端的供应链以掌握创新的关键变得越来越重要。

例如,行业十分关注英伟达是否会拓展到云计算领域,利用其硬件专长提供集成的人工智能云服务。

声明:本网转发此文章,旨在为读者提供更多信息资讯,所涉内容不构成投资、消费建议。文章事实如有疑问,请与有关方核实,文章观点非本网观点,仅供读者参考。

  • 友情链接