其实,只要去追溯人工智能的历史,就知道人工智能正是在利用电子计算机处理符号结构时提出的。早在1956年,数十名来自数学、心理学、神经科学、计算机科学与电气工程学领域的学者聚集在一起,讨论如何用计算机来处理符号结构,会上美国计算机科学家约翰·麦卡锡将这种研究命名为人工智能;同样作为计算机科学家的艾伦·纽厄尔和司马贺把一种被称为“逻辑理论家”的程序带到会议上,他们被会议发起人称为“人工智能之父”。纵观这些被称为人工智能的研究,无一不是发明一种处理信息(符号系统或数字)的装置,用其来整理和提取解决问题的知识。无论是逻辑理论家,还是1959年司马贺、纽厄尔和软件工程师约翰·肖公布的通用问题求解系统,都是如此。这种装置和前文讲过的两类装置(具有学习能力的神经网络和进行数学定理证明的计算机)的不同之处在于,前者处理的不是纯科学经验知识,亦不是纯数学知识,而是科学理论知识。正因为人工智能一开始就被界定为如何用一种装置实现运用科学理论知识解决实际问题,或通过经验提出科学理论,其被广泛地称为专家系统。
举个例子。1964年美国人工智能学家爱德华·费根鲍姆、分子生物学家乔舒亚·莱德伯格和化学家卡尔·杰拉西用某种装置处理火星上采集来的数据,看火星上有无可能存在生命。三人合作的结果就是第一个专家系统DENDRAL的诞生。DENDRAL输入的是质谱仪的数据,输出的是给定物质的化学结构。另一个例子是1978-1983年司马贺和计算机科学家帕特·兰利、盖里·布拉茨霍夫陆续发布了6个版本的BACON系统发现程序,该装置重新发现了一系列著名的物理、化学定律。纵观各式各样的专家系统,它们都是在创造一种装置,以获得科学理论知识的信息。专家系统有时是用科学理论推出经验知识,解决碰到的实际问题;有时是根据受控实验信息提出科学理论,或修改现有的科学理论知识。这些工作本来都是由人完成的,而专家系统是一种人造装置,用它来取代人做的事情。
我要问一个问题:这些专家系统获得的可靠信息中有暗知识吗?根据暗知识的定义,我们知道最后得到的可靠信息是什么,但不知道该信息是如何获得的。今日所有已知的专家系统都没有这样的智能。专家系统之所以做不到这一点,是因为它们不能如人工神经网络那样自行学习,也不能如机器证明那样完全不需要人的干预自行进行逻辑判断。如前所述,科学理论知识的进步依靠的是科学理论信息和经验信息的互动,它包括当从科学理论推出之受控实验信息不包含相应科学经验的受控实验信息时,规定两者哪一个必须修改,即两者如何互动。只有互动过程形成完全的闭环(没有主体参与),其才能完全通过人工装置来实现。这时,主体通过该装置得到科学理论的信息,但不知道该信息是如何得到的。这才是科学理论中的暗知识。
目前,这种装置正在孕育之中,美国人工智能研究实验室OpenAI推出的一款大型预训练人工智能语言模型ChatGPT也许是一个例子。为什么?科学理论作为横跨受控实验和数学世界的拱桥,由拱圈和上盖组成。上盖是用逻辑语言表达的受控实验和受控观察,即目前文献中记录的科学知识。拱圈是建立在测量之上用数量表达的受控实验(观察)结果之间的关系,它是作为各门科学基础的定律。ChatGPT利用自然语言的语法研究把自然语言陈述转化为逻辑语言陈述,然后自动把这些逻辑语言陈述中所蕴含的信息提取出来。当人通过ChatGPT得到了新的科学理论知识,但不知道该新知识是如何得到的时候,科学理论知识满足暗知识的定义。对于拱圈,亦可以建立电脑控制的受控实验和受控观察,获得测量数据和实现控制都不需要主体直接参与。这时,研究者也不知道得到的新定律是如何得到的。这也是科学理论的暗知识。
更重要的是,上盖是建立在拱圈之上的。只要将从陈述中得到新信息和电脑自行做实验结合,我们将发现,在科学理论中,暗知识的增长将超过明知识。在今日迅速发展的合成生物学中,正在酝酿着两者结合的可能性。这意味着人工智能第三种形态(获得科学理论知识中的暗知识的装置)也许最先在生命科学中被使用,其背后是物理、化学、数学、信息理论与生命科学理论深度交叉,形成基因合成、基因编辑、蛋白质设计、细胞设计、实验自动化的使能技术。其中,生命铸造厂(biofoundry)或许是典型的例子。然而,在被称为大设施的生命铸造厂的建造和调试中,有中国研究者却以“造物致知”作为口号。该口号沿用了中国传统的“格物致知”,大设施的建造者或许没有想到,只要合成生物学中有关设施实现了科学理论知识修改的闭环,科学理论知识中的暗知识就会产生。这种“致知”和我们熟悉的获得知识不尽相同。通过造物大设施的运作,合成生物会源源不断地被制造出来,但这一切不一定导致今日所知的那种生命科学理论知识的增长,因为它们中的相当一部分可能都是暗知识。
人类发现科学理论中存在大量暗知识,标志着自然现象因果解释的一场革命。我们知道自然现象服从因果律,但能体验因果律认识过程的只是知晓因果律的极小一部分。即便如此,也并不妨碍人类用因果性改造世界,因为就算大多数因果律是暗知识,我们仍可以通过人工智能来驾驭它们。
声明:本网转发此文章,旨在为读者提供更多信息资讯,所涉内容不构成投资、消费建议。文章事实如有疑问,请与有关方核实,文章观点非本网观点,仅供读者参考。
最近更新
- 淘宝为全国34省市自治区家乡宝贝打cal2024-02-23
- 玩转个性,HUAWEI Pocket 22024-02-23
- 能效电气汪进进:新能源充电桩行业的七大细2024-02-22
- 恒小花:AI人工智能的主要特征2024-02-21
- 从“众志有为”到“数智有为” 华为中国合2024-02-21
- 恒小花:人工智能将如何影响世界2024-02-20
- 恒小花:2024年AI人工智能趋势2024-02-19
- 恒小花:AGI创新潮涌未来2024-02-18
- 恒小花:AI人工智能机器人对影视行业有什2024-02-08
- 斯马特科技:携手企知道·科创空间,向PO2024-02-07